skip to main content


Search for: All records

Creators/Authors contains: "Biasotto, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The mass of the top quark is measured in 36.3$$\,\text {fb}^{-1}$$fb-1of LHC proton–proton collision data collected with the CMS detector at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$s=13TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be$$171.77\pm 0.37\,\text {Ge}\hspace{-.08em}\text {V} $$171.77±0.37GeV. This approach significantly improves the precision over previous measurements.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. A<sc>bstract</sc>

    The charge-parity (CP) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the t$$ \overline{\textrm{t}} $$t¯H and tH associated production, using 138 fb1of data collected in proton-proton collisions at$$ \sqrt{s} $$s= 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H → WW or H →ττand the top quarks decay via t → Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation ofCP-even fromCP-odd scenarios. Two-dimensional confidence regions are set onκtand$$ \overset{\sim }{\kappa } $$κ~t, which are respectively defined as theCP-even andCP-odd top-Higgs Yukawa coupling modifiers. No significant fractionalCP-odd contributions, parameterized by the quantity|$$ {f}_{CP}^{\textrm{Htt}} $$fCPHtt|are observed; the parameter is determined to be|$$ {f}_{CP}^{\textrm{Htt}} $$fCPHtt|= 0.59 with an interval of (0.24,0.81) at 68% confidence level. The results are combined with previous results covering the HZZ and H→ γγdecay modes, yielding two- and one-dimensional confidence regions onκtand$$ \overset{\sim }{\kappa } $$κ~t, while|$$ {f}_{CP}^{\textrm{Htt}} $$fCPHtt|is determined to be|$$ {f}_{CP}^{\textrm{Htt}} $$fCPHtt|= 0.28 with an interval of|$$ {f}_{CP}^{\textrm{Htt}} $$fCPHtt| <0.55 at 68% confidence level, in agreement with the standard modelCP-even prediction of|$$ {f}_{CP}^{\textrm{Htt}} $$fCPHtt|= 0.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract

    Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13$$\,\text {Te\hspace{-.08em}V}$$TeV. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016–2018 is used, corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1. The signal strength modifier$$\mu $$μ, defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be$$\mu = 0.95^{+0.10}_{-0.09}$$μ=0.95-0.09+0.10. All results are found to be compatible with the standard model within the uncertainties.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024